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Manifold Spline

Converting scanned data to spline surfaces, the control points,
knot structure are shown.
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Manifold Spline

Converting scanned data to spline surfaces, the control points,
knot structure are shown.
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Manifold Spline

Polygonal mesh to spline, control net and the knot structure.
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Manifold Spline
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Quad-Mesh

Figure: Quad-meshes with different number of singularities.
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Quad-Mesh

Figure: A holomorphic 1-form, a quadratic differential, and a
meromorphic quartic differential.
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Quad-Mesh

Figure: Quad-meshes with different number of singularities, a
holomorphic quadratic differential.
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Quad-Mesh

Figure: Quad-meshes with different number of singularities, a
meromorphic quartic differential.
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Singularities on Quadrilateral Meshes

Yellow, Green and Red vertices are with topological valence 3,
5 and 6 respectively.
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Metric Holonomy Condition
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Quad-Mesh Metric

Definition (Quad-Metric)
Given a quad-mesh Q, each face is treated as the unit planar
square, this will define a Riemannian metric, the so-called
quad-mesh metric gQ, which is a flat metric with cone
singularities.

Theorem (Quad-Mesh Metric Conditions)
Given a quad-mesh Q, the induced quad-mesh metric is gQ,
which satisfies the following four conditions:

1 Gauss-Bonnet condition;
2 Holonomy condition;
3 Boundary Alignment condition;
4 Finite geodesic trajectory condition.
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Gauss-Bonnet Condition

Definition (Curvature)
Given a quad-mesh Q, for each vertex vi , the curvature is
defined as

K (v) =

{
π

2 (4−k(v)) v 6∈ ∂Q
π

2 (2−k(v)) v ∈ ∂Q

where k(v) is the topological valence of v , i.e. the number of
faces adjacent to v .

Theorem (Gauss-Bonnet)
Given a quad-mesh Q, the induced metric is gQ, the total
curvature satisfies

∑
vi∈∂Q

K (vi) + ∑
vi 6∈∂Q

K (vi) = 2πχ(Q).

Namely

∑
vi∈∂Q

(2−k(vi)) + ∑
vi 6∈∂Q

(4−k(vi)) = 4χ(Q).Gu et al. Abel Condition



Holonomy Condition

Definition (Holonomy)
Given a quad-mesh Q, the induced flat metric is gQ, the set of
singular vertices is SQ. Suppose γ : [0,1]→Q \SQ is a closed
loop not through singularities, choose a tangent vector
v(0) ∈ Tγ(0)Q, parallel transport v(0) along γ(t) to obtain v(t).
The rotation angle from v(0) to v(1) in Tγ(0)Q is the holonomy
of γ, denoted as ρ(γ).

Because gQ is flat on Q \SQ, if γ1 is homotopic to γ2, then
ρ(γ1) = ρ(γ2). Therefore, holonomy is a homomorphism from
the fundamental group to S1,

λ : π1(Q \SQ)→ S1.
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Face Loop

Definition (face path)
A sequence of faces, {f0, f1, · · · , fn}, such that fi and fi+1 share
an edge. If f0 equals to fn, then the face path is called a face
loop.

Figure: A face path and a face loop.
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Fundamental Group

Definition (Fundamental Group)
Given a quad-mesh Q with singularities SQ, fix a base face σ0,
the homotopy classes of face loops through σ0 form the
fundamental group, denoted as π1(Q−SQ,σ0).

Figure: A face path and a face loop.
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Holonomy

Definition (Holonomy of a loop)
Given a face loop γ through σ0, fix a frame on σ0, parallel
transport the frame along γ. When we return to σ0, the frame is
rotated by an angle kπ/2, which is called the holonomy of γ,
and denoted as 〈γ〉.

π
2

σ0
γ

Figure: Parallel transportation along a face loop.Gu et al. Abel Condition



Holonomy Condition

Theorem (Holonomy)
Given a quad-mesh Q with induced metric gQ, the holonomy
homomorphism is

λ : π1(Q \SQ)→ S1,

then the holonomy group is a subgroup of rotation group

λ (π1(Q \SQ))⊂R = {ei kπ

2 ,k = 0,1,2,3}.
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Boundary Alignment Condition

Given a flat cone metric with satisfying the holonomy condition,
one can define a global cross field by parallel transportation,
which gives the stream lines.

Figure: Quad-mesh with 4 saddle points.
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Boundary Alignment Condition

Definition (Boundary Alignment Condition)

Given a quad-mesh Q, with induced metric gQ, one can define
a global cross field by parallel transportation, which is aligned
with the boundaries.

Figure: Cross field is mis-aligned with the inner boundaries.
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Finite Geodesic Trajectory Condition

Definition (Finite Geodesic Trajectory Condition)
The stream lines parallel to the cross field are finite geodesic
loops. This is the finite geodesic lamination condition.

Figure: Finite geodesic trajectory condition.
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Riemann Surface Theory
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Riemann Surface

Definition (Riemann Surface)
Suppose M is a topological surface, with a complex atlas
{(Uα ,ϕα )}, where ϕα : Uα → C, such that all coordinate
transition functions

ϕαβ = ϕβ ◦ϕ
−1
α

are biholomorphic, then M is called a Riemann surface.

Definition (Meromorphic Function)
Suppose f : M → C∪{∞} is a complex function defined on the
Riemann surface M. If for each point p ∈M, there is a
neighborhood U(p) of p with local parameter z(p) = 0, f has
Laurent expansion

f (z) =
∞

∑
i=k

aiz i ,

then f is called a meromorphic function.
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Meromorphic Differential

Definition (Meromorphic Differential)

Given a Riemann surface (M,{zα}), ω is a meromorphic
differential of order n, if it has local representation,

ω = fα (zα )(dzα )n,

where fα (zα ) is a meromorphic function, n is an integer; if
fα (zα ) is a holomorphic function, then ω is called a holomorphic
differential of order n.
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Zeros and Poles

Definition (Zeros and Poles)
Suppose f : M → C∪{∞} is a meromorphic function. For each
point p, there is a neighborhood U(p) of p with local parameter
z(p) = 0, f has Laurent expansion

f (z) =
∞

∑
i=k

aiz i ,

if k > 0, then p is a zero with order k ; if k = 0, then p is a
regular point; if k < 0, then p is a pole with order k . The
assignment of p with respect to f is denoted as νp(f ) = k .

The zeros and poles of a meromorphic differential are defined
in the similar way.
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Divisor

Definition (Divisor)
The Abelian group freely generated by points on a Riemann
surface is called the divisor group, every element is called a
divisor, which has the form D = ∑p npp. The degree of a divisor
is defined as deg(D) = ∑p np. Suppose D1 = ∑p npp,
D2 = ∑p mpp, then D1±D2 = ∑p(np±mp)p; D1 ≤ D2 if and only
if for all p, np ≤mp.

Definition (Meromorphic Function Divisor)
Given a meromorphic funciton f defined on a Riemann surface
S, its divisor is defined as (f ) = ∑p νp(f )p, where νp(f ) is the
assignment of p with respect to f .

The divisor of a meromorphic function is called a principle
divisor. The divisor of a meromorphic differential is defined in
the similar way.
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Principle Divisor

Theorem
Suppose M is a compact Riemann surface with genus g, f is a
meromorphic function, then

deg((f )) = 0,

ω is a meromorphic differential, then

deg((ω)) = 2g−2.
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Canonical Fundamental Group Generators

q

b1

b2

a2

a1

a1

b1

a−1
1

b−1
1

a2

b2

a−1
2

b−1
2

Algebraic intersection numbers satisfy the conditions:

ai ·bj = δij ,ai ·aj = 0,bi ·bj = 0.
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Holomorphic Differential Group Basis

The holomorphic one-form basis {ϕ1,ϕ2, · · · ,ϕg} satisfy the
dual condition ∫

aj

ϕi = δij .
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Period Matrix

Definition (Period Matrix)
Suppose M is a compact Riemann surface of genus g, with
canonical fundamental group basis

{a1,a2, · · · ,ag ,b1,b2, · · · ,bg}

and holomorphic one form basis

{ϕ1,ϕ2, · · · ,ϕg}

The period matrix is defined as [A,B]

A =

(∫
aj

ϕi

)
,B =

(∫
bj

ϕi

)
.

Matrix B is symmetric, Img(B) is positive definite.
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Jacobi Variety

Definition (Jacobi Variety)
Suppose the period matrix

A = (A1,A2, · · · ,Ag), B = (B1,B2, · · · ,Bg),

the lattice Γ is

Γ =

{
g

∑
i=1

αiAi +
g

∑
j=1

βjBj

}
,

the Jacobi variety of M is defined as

J(M) = Cg/Γ.
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Jacobi Map

Definition (Jacobi Map)
Given a compact Riemann surface M, choose a set of
canonical fundamental group generators {a1, · · · ,ag ,b1, · · · ,bg},
and obtain a fundamental domain Ω,

∂ Ω = a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 · · ·agbga−1
g b−1

g .

choose a base point p0, the Jacobi map µ : M → J(M) is
defined as follows: for any point p ∈M, choose a path γ from p0
to p inside Ω,

µ(p) =

(∫
γ

ϕ1,
∫

γ

ϕ2, · · · ,
∫

γ

ϕg

)T

.
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Abel Theorem

Theorem (Abel)
Suppose M is a compact Riemann surface with genus g, D is a
divisor, deg(D) = 0. D is principle if and only if

µ(D) = 0 in J(M).
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Quad-Mesh Abel condition
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Divisor

Definition (Divisor)
The Abelian group freely generated by points on a Riemann
surface is called the divisor group, every element is called a
divisor, which has the form D = ∑p npp. The degree of a divisor
is defined as deg(D) = ∑p np. Suppose D1 = ∑p npp,
D2 = ∑p mpp, then D1±D2 = ∑p(np±mp)p; D1 ≤ D2 if and only
if for all p, np ≤mp.

Definition (Quad-Mesh Divisor)
Suppose Q is a closed quadrilateral mesh, then Q induces a
divisor

DQ = ∑
vi∈Q

(k(vi)−4)vi ,

where vi is a vertex with valence k(vi).
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Quad-Mesh vs. Riemann Surface

Theorem (conformal structure induced by quad-mesh)
Suppose Q is a closed quadrilateral mesh, then Q induces a
conformal structure and can be treated as a Riemann surface
MQ.

Proof.

Uf Ue

Uv

(a) conformal atlas (b) singularities
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Quad-Mesh Meromorphic Differential

Theorem (Quad-Mesh Meromorphic Differential)
Suppose Q is a closed quadrilateral mesh, then Q induces
meromorphic quartic differential.

Proof.

On each face f , define dzf , ωQ = (dzf )4; vertex face transition

z
k
4
v = ei nπ

2 zf +
1
2

(±1± i) (1)

where k is the vertex valence, therefore(
k
4

)4

zk−4
v (dzv )4 = (dzf )4 = ωQ. (2)

Gu et al. Abel Condition



Quad-Mesh Abel Condition

Theorem (Gu-Lei, Quad-Mesh Abel Condition)
Suppose Q is a closed quadrilateral mesh, then for any
holomorphic differential ϕ

µ(DQ−4(ϕ)) = 0 in J(MQ). (3)

Inverse Proposition
Inversely, given a divisor D satisfies the Abel condition Eqn. 3,
then there is a meromorphic quartic differential ω, such that
(ω) = D.
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Holomorphic 1-form
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Holomorphic One-form

Theoretic Foundation
Holomorphic 1-forms are computed based on Hodge theory, so
that each cohomological class has a unique harmonic form.
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Holomorphic One-form

Algorithm Input and Output

(a). input (b). output
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Holomorphic One-form

Computational Algorithm
Input: A compact, closed triangular polyhedron mesh M;
Output:A set of basis of the holomorphic one-form group,
{ϕ1,ϕ2, · · · ,ϕ2g}

1 Compute a basis of homology group H1(M,Z),
{γ1,γ2, . . . ,γ2g};

2 Compute a dual basis of cohomology group H1(M,R),
{τ1,τ2, · · · ,τ2g};

3 Diffuse the cohomology group basis to harmonic 1-forms,
{ω1,ω2, · · · ,ω2g};

4 Compute the conjugate harmonic 1-form ∗ωi for each ωi ,
using Hodge star operator;

5 Construct a basis of holomorphic 1-form,{
ω1 +

√
−1∗ω1,ω2 +

√
−1∗ω2, · · · ,ω2g +

√
−1∗ω2g

}
Gu et al. Abel Condition



Holomorphic One-form

Homology Group Basis

Compute a CW-cell decomposition, compute the generators of
the 1-skeleton.
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Holomorphic One-form

Harmonic 1-form group basis

Cut the surface along the homology group base curves, set the
dual cohomology group basis, solve Poisson equations to
obtain harmonic 1-form group basis.
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Holomorphic One-form

Conjugate Harmonic One-form

Compute the dual vector field for each harmonic 1-form, rotate
the vector field about the normal for π/2 angle.

Gu et al. Abel Condition



Holomorphic One-form

Holomorphic 1-form group basis
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Holomorphic One-form

holomorphic 1-form construction by linear combination

We can compute the period matrix, and the Abel-Jacobi map

A =

(∫
aj

ϕi

)
,B =

(∫
bj

ϕi

)
, µ(p) =

(∫
γ

ϕ1,
∫

γ

ϕ2, · · · ,
∫

γ

ϕg

)T

.
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Holomorphic Quadratic Differential
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Holomorphic One-form

Computational Strategy

Prof. S. Gortler and D. THurston, “Discrete Quadratic
Differentials”$�

Holomorphic quadratic differentials are computed based
on R. Scheon’s graph-valued harmonic map, so that the
Hopf differential of the harmonic map gives the
holonomorphic quadratic differential (CMAME 2017).
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Measured Foliation

Figure: A finite measured foliation on a genus two surface.
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Foliation

Figure: A finite measured foliation on a genus three surface.
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Measured Foliation

Definition (Measured Foliation)

Let S be a compact Riemann surface of genus g > 1. A Ck

measured foliation on S with singularities z1, . . . ,zl of order
k1, . . . ,kl respectively is given by an open covering {Ui} of
S−{z1, . . . ,zl} and open sets V1, . . . ,Vl around z1, . . . ,zl
respectively along with Ck real valued functions vi defined on
Ui s.t.

1 |dvi |= |dvj | on Ui ∩Uj

2 |dvi |= |Im(z−zj)
kj/2dz| on Ui ∩Vj .

The kernels ker dvi define a Ck−1 line field on S which
integrates to give a foliation F on S−{z1, . . . ,zl}, with kj + 2
pronged singularity at zj . Moreover, given an arc γ ⊂ S, we
have a well-defined measure µ(γ) given by µ(γ) = |∫

γ
dv |,

where |dv | is defined by |dv |Ui = |dvi |.
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Measured Foliation

Figure: Finite measured foliations on a genus three surface.
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Measured Foliation

Figure: Holomorphic quadratic differentials on a genus three surface.
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Whitehead Move

Figure: Equivalent measured foliations and Whitehead moves.
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Equivalence

Two measured foliations (F ,µ) and (G ,ν) are said to be
equivalent if after some Whitehead moves on F and G , there is
a self-homeomorphism of S isomorphic to the identity, which
takes F to G , and µ to ν .
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Holomorphic Quadratic Differentials

Definition (Holomorphic Quadratic Differentials)
Suppose S is a Riemann surface. Let Φ be a complex
differential form, such that on each local chart with the local
complex parameter {zα},

Φ = ϕα (zα )dz2
α ,

where ϕα (zα ) is a holomorphic function.

A holomorphic quadratic differentials on a genus zero
closed surface must be 0.
The linear space of all holomorphic quadratic differentials
is 1 complex dimensional, where the genus g = 1.
The linear space of all holomorphic quadratic differentials
is 3g−3 complex dimensional, where the genus g > 1.
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Zeros

Figure: Holomorphic quadratic forms on the genus two surface.

Definition (Zeros)

A point zi ∈ S is called a zero of Φ, if ϕ(zi) vanishes. A
holomorphic quadratic differential has 4g−4 zeros.
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Natural Coordinates

Definition (Natural Coordinates)
For any point away from zero, we can define a local coordinates

ζ (p) :=
∫ p√

ϕ(z)dz. (4)

which is the so-called natural coordinates induced by Φ.

The curves with constant real natural coordinates are called the
vertical trajectories, with constant imaginary natural
coordinates horizontal trajectories. The trajectories through the
zeros are called the critical trajectories.
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Natural Coordinates

Figure: Trajectories of a holomorphic quadratic differential, blue -
horizontal, red - vertical, black -critical trajectory.
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Strebel Differential

(a) non-Strebel (b) Strebel

Figure: A non-Strebel (a) and a Strebel differential (b).
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Strebel Differential

Definition (Strebel)
Given a holomorphic quadratic differential Φ on a Riemann
surface S, if all of its horizontal trajectories are finite, then Φ is
called a Strebel differential.

A holomorphic quadratic differential Φ is Strebel, if and only if its
critical horizontal trajectories form a finite graph. The horizontal
trajectories of a holomorphic differential may be infinite spirals
as in the left frame, or finite loops as in the right frame.
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From Differential to Foliation

Given a holomorhic quadratic differential Φ on a Riemman
surface S, it defines a measured foliation in the following way:
Φ induces the natural coordinates ζ , the local measured
foliations are given by

({Imζ = const}, |d Imζ |), (5)

then piece together to form a measured foliation known as the
horizontal measured foliation of Φ. Similarly, the vertical
measured foliation of Φ is given by

({Reζ = const}, |dReζ |). (6)
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From Foliation to Differential

Hubbard and Masure proved the following fundamental
theorem connecting measured foliation and holomorphic
quadratic differentials.

Theorem (Hubbard-Masur)

If (F ,µ) is a measured foliation on a compact Riemann surface
S, then there is a unique holomorphic quadratic differential Φ
on S whose horizontal foliation is equivalent to (F ,µ).
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Pants Decomposition Graph

P1
P2

P3

P4
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P6
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Figure: Pants decomposition and the pants decomposition graph.
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Pants Decomposition

Definition (Pants Decomposition)
Given a genus g > 1 closed surface S, a set of 3g−3 disjoint
simple loops, Γ = {γ1,γ2, · · · ,γ3g−3} is called an admissible
curve system. Γ segments S into 2g−2 pairs of pants,
{P1,P2, · · · ,P2g−2}, this forms a pants decomposition of the
surface.

Definition (Pants Decomposition Graph)
Each pair of pants is represented as a node.
Each simple loop is denoted by an edge. Suppose the
simple loop γi connecting two pairs of pants Pj ,Pk , then the
arc of γi connects nodes of Pj and Pk . G is called the pants
decomposition graph.
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Existence of Strebel Differential

Theorem (Jenkins-Strebel)
Given non-intersecting simple loops Γ = {γ1,γ2, · · · ,γ3g−3}, and
positive numbers {h1,h2, · · · ,h3g−3}, there exists a unique
holomorphic quadratic differential Φ, unique up to scaling,
satisfying the following :

1 The critical graph of Φ partition the surface into 3g−3
cylinders, {C1,C2, · · · ,C3g−3}, such that γk is the generator
of Ck ,

2 The modulus each cylinder (Ck , |Φ|) equals to λhk ,
k = 1,2, · · · ,3g−3, for some positive constant λ .
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Poly-cylinder Surface

Given a Riemann surface S with genus g > 1, Φ is a Strebel
differential, then the natural coordinates of Φ ζ : U→ C induces
a flat metric with cone singularities, denoted as |Φ|,

1 The zeros of Φ become cone singularities, with cone angle
3π,

2 The critical graph of Φ partitions the surface into cylinders
{C1,C2, · · · ,C3g−3}, the generators of the cylinders are
Γ = {γ1,γ2, · · · ,γ3g−3},

3 The pants decomposition graph induced by Γ is denoted as
GΓ,

4 The heights of cylinder (Ck , |Φ|) is hk ,
5 The circumference of (Ck , |Φ|) is lk ,
6 The twisting angle of Ck is θk ,

then (S, |Φ|) can be represented by (GΓ,h, l,θ).
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Poly-cylinder Surface

hi/2

li/2

hk/2
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(a) 3 rectangles (c) a hexagon (e) a pair of pants
lj + lk > li (type I)

Figure: Flat cylindric surface model of (S, |Φ|).
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Poly-cylinder Surface

hi/2

li/2

hk/2

lk/2

hj/2
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(a) 3 rectangles (b) a hexagon (f) a pair of pants
lj + lk < li (type II)

Figure: Flat cylindric surface model of (S, |Φ|).
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Poly-cylinder Surface

γk θk

Pijk Pklm

γi

γj
γl

γm

Figure: The twisting angle when gluing two pairs of pants.
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Strebel Differentials

γ1

γ2

γ3

γ1

γ2

γ3

(a) (b)

Figure: Strebel differentials on the genus two surface.

In the poly-cylinder surface model (GΓ,h, l,θ), (l ,θ) give a local
coordinates of the Teichmüller space. The height function h
changes.
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Strebel Differentials

γ1

γ2

γ3

γ1

γ2

γ3

(c) (d)

Figure: Strebel differentials on the genus two surface.

In the poly-cylinder surface model (GΓ,h, l,θ), (l ,θ) give a local
coordinates of the Teichmüller space. The height function h
changes.
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Differential to Quad-Mesh

Given a Strebel differential Φ, we obtain a poly-cylinder surface,

hi/2

li

hk/2

lk

hj/2

lj

hi/2

li lj

lk

titj

tk

p

hi/2 hj/2

hj/2

hk/2hk/2

hi/2

(a) type II (b) type I

Figure: Change each pair of pants of type II to that of type I by a
Whitehead move.
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Differential to Quad-Mesh

Figure: Divide each cylinder to two rectangles by connecting
corresponding zeros on different boundary components; Construct an
initial colorable quad-mesh;Subdivide.
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Algorithmic Pipeline

Figure: Input Surface.
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Algorithmic Pipeline

Figure: Tetrahedral meshing.
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Algorithmic Pipeline

γ1

γ2

γ3

P1

P2

Figure: Admissible curve system, pants decomposition.
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Algorithmic Pipeline

Figure: Two pairs of pants.
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Algorithmic Pipeline

γ1 γ3
γ2

h1
h2 h3

P1 P2

Figure: Pants decomposition graph.
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Strebel Differentials

γ1

γ2

γ3

Figure: Holomorphic quadratic differential.
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Algorithmic Pipeline

P1

P2

γ1

γ3

γ2

Figure: Admissible curve system, pants decomposition.
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Algorithmic Pipeline

γ1 γ2 γ3h1 h3h2

P1

P2

Figure: Pants decomposition graph.
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Algorithmic Pipeline

Figure: Holomorphic quadratic differential.
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Algorithmic Pipeline

Figure: Critical horizontal trajectories and vertical trajectories.
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Algorithmic Pipeline

Figure: Cylindrical decomposition.
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Algorithmic Pipeline

Figure: Cylindrical decomposition.
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Algorithmic Pipeline

Figure: Colorable quadrilateral mesh.
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Foliations

Figure: Two conjugate finite measured foliations on a genus five
surface.
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Foliations

Figure: Foliations on a genus 0 surface with multiple boundaries.Gu et al. Abel Condition



Genus Three Model
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Figure: Holomorphic quadratic differential of a genus three surface.
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Genus Three Model

Figure: Hexahedral mesh of a genus three model.
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Hex-Mesh

Figure: Hexahedral mesh of decocube model.
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Meromorphic Quartic Differential
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Meromorphic Quartic Differential

Theoretic Foundation
Meromorphic quartic differentials are computed based on
Abel-Jacobi theorem and discrete surface Yamabe flow, such
that the flat metric with the cone singularities at the divisor is
the metric induced by the meromorphic differential.
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Vertex Scaling

Definition (Vertex Scaling)

Two triangulated PL surface (S,T ,d) and (S,T ,d ′) are said to
differ by a vertex scaling, if ∃λ : V (T )→ R>0, such that
d ′ = λ∗d on E(T , where

λ∗d(u,v) = λ (u)λ (v)d(u,v).
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Figure: vertex scaling.
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Discrete Conformal Equivalence

Definition (Gu-Luo-Sun-Wu)

Two PL metrics d , d ′ on a closed marked surface (S,V ) are
discrete conformal, if they are related by a sequence of two
types of moves: vertex scaling and edge flip preserving
Delaunay property.

T T ′

Figure: Edge flip, both triangulations are Delaunay.
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Discrete Conformal Equivalence

Given a PL metric d on (S,V ), produce a Delaunay
triangulation T of (S,V ),

Figure: (S,V ) with PL metric d , the triangulation is Delaunay.
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Discrete Conformal Equivalence

Each face t ∈T is associated an ideal hyperbolic triangle:

t
B

t

t∗
H3

If t ,s ∈T glued by isometry f along e, then t∗ and s∗ are glued
by the same f ∗ alonge e∗,
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Discrete Conformal Equivalence

This induces a hyperbolic metric d∗ on S−V .

t s s∗
t∗

Motivated by the important work of
Bobenko-Pinkall-Springborn, equivalent to the previous
defintion using vertex scaling and Delaunay condition.

Definition (Gu-Luo-Sun-Wu, JDG 2018)

Two PL metrics d1 and d2 on (S,V ) are discrete conformal iff
d∗1 and d∗2 are isometric by an isometry homotopic to identity on
S−V .
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Existence of the metric

Theorem (Gu-Luo-Sun-Wu)

Given a PL metric d on a closed marked surface (S,V ), and
curvature K ∗ : V → (−∞,2π), such that K satisfies the
Gauss-Bonnet condition ∑K (v) = 2πχ(S), there there is a d∗

discrete conformal to d, and d∗ realizes the curvature K ∗.
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vertex scaling edge flip(S, T , l) (S, T , λ ∗ l) (S, T ′, λ ∗ l)

Figure: Discrete surface Yamabe flow.
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Discrete Conformal Equivalence

Convex Optimization
Using Newton’s method to minimize the following energy

min
λ

∫ (λ1,λ2,...,λn)

∑
v

(K ∗(v)−K (v))d logλ (v),

such that Πv λ (v) = 1. During the optimization, keep the
triangulation always to be Delaunay.
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Algorithm for Meromorphic Quartic Differential

Input: A closed genus g triangle mesh M, and an initial divisor D;
Output: A meromorphic quartic differential ω, such that (ω) is close to D;

1 Compute 4 holomorphic 1-forms, ϕ1,ϕ2, · · · ,ϕ4;
2 Check if the input divisor D satisfies the Gauss-Bonnet condition;
3 Optimize the positions of the zeros and poles, such that

µ

(
D−

4

∑
k=1

(ϕk )

)
≡ 0 mod Γ.

4 Set the target Gaussian curvatures at the zeros and poles in D, use
discrete surface Yamabe flow to compute a flat metric;

5 Choose a horizontal direction, issue critical trajectories from the
singularities to form a motograph;

6 The motorgraph divides the surface into topological rectangles, each of
them is isometrically mapped to the plane using the flat metric.

7 The differentials (dz)4 on the local chart are pulled back to obtain ω.
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Bull Model

Figure: Meoromorphic quartic differential on a bull model.
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Bull Model

Figure: Meoromorphic quartic differential on a bull model.
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Bull Model

Figure: Meoromorphic quartic differential on a bull model.
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Buddha Model

Figure: Meoromorphic quartic differential on a Buddha model.
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Buddha Model

Figure: Meoromorphic quartic differential on a Buddha model.
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Buddha Model

Figure: Meoromorphic quartic differential on a Buddha model.
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witch Model

Figure: Meoromorphic quartic differential on a witch model.
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Witch Model

Figure: Meoromorphic quartic differential on a witch model.
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witch Model

Figure: Meoromorphic quartic differential on a witch model.
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Dancer Model

Figure: Meoromorphic quartic differential on a dancer model.
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Dancer Model

Figure: Meoromorphic quartic differential on a dancer model.Gu et al. Abel Condition



Dancer Model

Figure: Meoromorphic quartic differential on a dancer model.
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Summary

Build the connection between quad-meshes and
meromorphic differentials.
Holomorphic one-form based on Hodge theory;
Holomorphic quadratic differential based on graph-valued
harmonic maps;
Meromorphic quartic differential based on Abel-Jacobi
condition and discrete Yamabe flow.
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Future Direction

The Abel-Jacobi condition guarantees the holonomy condition.
The finite trajectory condition needs to deform the conformal
structure of the surface. Generally, meromorphic quartic
differentials can produce T-Splines, which can satisfy the
requirements in computational mechanics.
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Thanks

For more information, please email to gu@cs.stonybrook.edu.

Thank you!
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